Solving systems of fixpoint equations

an algorithmic perspective

Master student: Denis Mazzucato
Supervisor: Prof. Paolo Baldan
Co-supervisor: Postdoc Tommaso Padoan
September 23, 2020
Cost of software failure

- 2016, 1.1 trillion USD in financial losses
- 2017, 1.7 trillion USD in financial losses

Examples:
- 1996: Ariane 5, \(\sim 370\) million USD caused by an arithmetic overflow
- 2005: Toyota electronic throttle control system failure, at least 89 death

In recent history:
- December 2018: \(\sim 30\) million O2 users in UK lost access to mobile data services.
- February 2020: \(\sim 100\) flights disrupted in London’s Heathrow.
Motivating program verification

How to avoid such malfunctions?

- Choose a **safe programming language**.
- Carefully **design** and develop software (with appropriate time and funds).
- Adapt **software verification** techniques.
Software verification

- **Dynamic analysis**, usually associated to **testing**.
- **Formal verification**, rigorous methods to formally ensure that the software respects some requirements.
Dynamic analysis

Pros:
- A testing system is easier and quicker to be built.
- Operates on the **running code**.

Cons:
- Operates on the running code.
- Cannot **exhaustively test** all the input/output combinations.
- Cannot certify system properties.
Formal methods

Cons:

- Requires a whole specialized team.
- Requires a **formal model** of the system.

Pro: ensures that the system respects some desirable properties.
Common approaches:
- Abstract interpretation
- Model checking
- Behavioral equivalences

Reduce to **systems of fixpoint equations**, over suitable lattices of information.
Abstract interpretation

- Analyse sw properties like **constant propagation analysis**, bounds analysis.
- Interprets the code over a proper abstract domain.
- Leads to **systems of least fixpoint equations** (roughly speaking, one equation per statement).
Model checking

- [Kozen1983] **Formal model** of the system and a **logic** to express properties.
- Checks whether the property is satisfied by the system’s model.
- Produces least and greatest fixpoint equations.
Given a complete lattice L, a **system of fixpoint equations** E over L is a list of m equations of the form

$$x_i = \eta_i \ f_i(x_1, \ldots, x_m)$$

where f_i are monotone functions and $\eta_i \in \{\mu, \nu\}$.

The **solution** of systems of fixpoint equations can be characterized as a **parity game**, [Hasuo2016; Baldan2018].
Parity games

The game could finish either:

(★) **finite play**, the winner is the player whose opponent is unable to move, or

(★★) **infinite play**, the winner is determined by the priorities appearing in the play.
Fixpoint games

Solution of a system of equations characterized via parity games.

Fixpoint game

L be a complete lattice, B_L a basis for L. Given a system of fixpoint equations E over L, the corresponding **fixpoint game** is a parity game defined as follows:

<table>
<thead>
<tr>
<th>Position</th>
<th>Player</th>
<th>Moves</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b, i)</td>
<td>\exists</td>
<td>X such that $b \sqsubseteq f_i(\bigsqcup X)$</td>
</tr>
<tr>
<td>(X_1, \ldots, X_m)</td>
<td>\forall</td>
<td>(b', j) such that $b' \in X_j$</td>
</tr>
</tbody>
</table>

Intuition: \exists wins at (b, i) if $b \sqsubseteq$ solution of i-th equations.

- For model-checking: a state satisfies a property.
- For behavioral equivalence: two states are equivalent.
Fixpoint games

- Alternation between player \exists and \forall.
- \exists plays sets of elements in which is supposed to win.
 i.e., X such that $b \subseteq f_i(\bigsqcup X)$
- Afterwards, \forall replies with one of them, asking \exists to prove her/his guess.
 i.e., (b', j) such that $b' \in X_j$
- And the game continues until a winner is retrieved.
Model checking μ-calculus

μ-calculus:

- Expressive logic for system properties.
- Systems of equations over the sets of states.

Example: liveness properties

- Property P **eventually** holds.
- $X =_\mu P \lor \Diamond X$

E.g., the system will eventually enter the critical section.
Safety properties/invariants

- Property P always holds as invariant.
- $X_\equiv \nu P \land \square X$

E.g., absence of deadlocks (it is invariant that the system can progress).
Property to satisfy with $P = \{E, D\}$:

$$\varphi = \nu Y.((\mu X.(P \lor \lozenge X)) \land \square Y)$$

e.g., the system can always eventually enter the critical section.

The equivalent **system of fixpoint equations** is shown below:

$$\begin{cases} x_1 = \nu \{E, D\} \cap \square x_1 \\ x_2 = \mu x_1 \cup \lozenge x_2 \end{cases}$$
Graphical representation of some unfolding steps of the fixpoint game:
In practice

Over **finite lattices**, the game-characterization allows one to determine the solution **constructively**, step-by-step.
Progress measures

- Using **progress measures**, a mechanism of propagation of the information for every position of the gameboard.
- For each position, the progress measure characterizes a winning strategy for \exists, if any.

Progress measure equations

The *progress measure equations* for E over the lattice $[\lambda_L]^m$, is represented by Ψ_E the corresponding endofunction on $L \to m \to [\lambda_L]^m$ which is defined for $R : B_L \to m \to [\lambda]^m$, by

$$\Psi_E(R)(b)(i) = \min_{\preceq,i} \left\{ \sup \{ R(b')(j) + \delta^\eta_i \mid (b', j) \in A(X) \} \mid X \in E(b, i) \right\}$$
Progress measures

- **Cons:** requires to **explore all the moves** for each position.
- A naive application of the theory is highly **impractical**, too many moves.
- **Global vs Local approach:**
 1. Knowing the winner at each position can be of no interest.
 2. Moves can be very many.
Example: systems equivalence
- We need to establish the equivalence of \((x_1, y_1)\).
- The global approach computes all the possible pairs.
Local approach

- Determine the winner in a restricted set of positions.
- Usually the set of initial positions.

Pro: on-demand exploration, only what you need.
Reducing the moves:

- Number of moves can be impractically high.
- Notion of selections to limit all the possible moves player \exists has to play each turn.
- Basic idea: dependencies between moves
 - if I know that a player wins over a defined move,
 - then more other moves will be winning for the given player.
Selections formally

- **Hoare preorder** on moves \((2^{B_{L}}, \sqsubseteq_{H})\), where

\[X \sqsubseteq_{H} Y \text{ if } \forall x \in X, \exists y \in Y \text{ s.t. } x \sqsubseteq y \]

- **Upward-closure** with respects to Hoare as

\[\uparrow_{H} X = \{ x \in (2^{B_{L}})^{m} | \exists y \in X \text{ s.t. } y \sqsubseteq_{H} x \} \]

selection

Function from positions of player \(\exists\) to sets of moves. Such that, for all \((b, i)\) it holds \(\uparrow_{H} \sigma(b, i) = E(b, i)\).

- Restricting the game to selections gives an equivalent game.
Symbolic ∃-moves

Logical representation of ∃-moves to efficiently explore selections.

logic for upward closed sets with respect to ⊑_H

Let \(L \) be a lattice and let \(B_L \) be a basis for \(L \). Let \(m \) be the number of equations.

The logic \(\mathcal{L}_m^H(B_L) \) has formulae defined as follows, where \(b \in B_L \) and \(j \in m \):

\[
\varphi ::= [b, j] \mid \bigwedge_{k \in K} \varphi_k \mid \bigvee_{k \in K} \varphi_k
\]

Local approach and selections lead to a considerable saving in terms of exploration space.
Algorithm outline

- **Local approach** based on a **depth-first** exploration.
- **Assumptions/decisions** are made on the winner of some positions explored.
- **Assumptions** are added when the current position is possibly a winning position.
- **Decisions** are added when an evidence of a winning strategy for the current position is found.
- Already found positions are remembered to unfold loops.
- Only the sufficient set of moves is explored.
- Decisions and assumptions are **withdrawn** when there is a witness against them.
Functions `Explore` and `Backtrack` are mutually called throughout the execution.

- Function `Explore` goes downward until finds:
 - positions with no move left,
 - decisions/assumptions for the current position.

 Afterwards, we backtrack.

- Function `Backtrack` goes upward until finds:
 - the root,
 - positions controlled by the current winner’s opponent with moves left.
Conclusion

- Game-based characterization of systems of fixpoint equations.
- Restriction of possible moves using selections.
- Progress measure to prove the equivalence of the game restricted to selections.
- Efficient logical representation of selections.
- Local algorithm to solve the game.
Future work

- Working tool, prototypal to solve verification tasks
- Infinite (height) lattices via abstraction
- Up-to functions